
Week 15 - Monday

 What did we talk about last time?
 Mostly work days
 Before that:
 Execution and control
 Earned value management
 Planned Value, Earned Value, Actual Cost
 Burn charts

 Time: Friday, 12/13/2024 2:45 - 4:45 p.m.

 The exam will have:
 Short answer questions
 At least one matching question
 One or two diagrams or figures you must create
 Two to three essay questions

 Managerial concerns are about organization and control
 Project cost
 Time estimation
 Scheduling and tracking
 Team management
 Risk management
 Quality

 Technical concerns are about what product, how to build it, and
building it
 Software requirements
 Design
 Programming languages and environments
 Coding standards
 Defect prevention, detection, and removal
 Version control
 Documentation
 Maintenance

 Scope
 How much the project is trying to accomplish
 Creep is the tendency for the work to increase

 Time
 Must be reasonable for the project size
 Must be monitored

 Cost
 Similar issues as with time

 Quality
 How good is acceptable?
 Quality assurance must be done through the project, not just at the end

 Resources
 Do you have the people (and tools) to get the job done?

 Risks
 Have you planned for things going wrong?

 Traditional methods
 Careful planning and hierarchical leadership
 Steps like requirement specification, design, implementation, testing, and maintenance
 Example: Waterfall model

 Agile methods
 Constant iteration
 Self-directed teams
 Minimal documentation
 Example: Scrum

 Both methods are widely used and many successful teams use aspects of both
 The project for this class will mostly employ traditional methods because agile

works best with experienced developers

 Requirements are functions or characteristics that software
has

 Customers or users determine the requirements
 Stakeholder is a broad term that includes customers, users,

developer, managers, and maybe the public
 Designs specify how the software system will meet the

requirements
 Designs can look at a system from different aspects
 Design patterns are standard solutions to problems that have

been useful in the past and can help structure designs

 After the design is made, the software must be implemented
in one or more programming languages

 Compilers and interpreters are used to run the programs
 Editors allow people to write code
 Version control tools let people track the evolution of the

code
 Code checkers see if the code is meeting certain standards
 Debuggers help programmers find mistakes

 For any large software project (and even small ones), it's
valuable to have a way to track changes over time

 Such tools are called version control systems
 They allow:
 Changes to be tracked over time
 Developers to check code into repositories
 Comparison of files over time
 Documentation of changes made

 It's more than just a glorified backup system

 A repository is where all the development data is stored
 Usually called repos by professionals

 Repositories include the current source code as well as a
history of all the changes ever made

 For source code, most version control systems use delta
compression, meaning that only the differences between files
are stored

 Thus, hundreds of versions of your code can be stored without
taking up hundreds of times the space

 Committing a file is adding its changes to a repository
 Cloning means creating a copy of another repository,

including history
 Merging is combining two sets of files with independent

changes into one set with changes from both
 Pulling (or fetching) copies the changes from an outside

repository and adds them to the current repository
 Pushing copies the changes from the current repository to an

outside repository

 Git is a distributed VCS
 Every computer has a complete history of all the changes,

ever
 There's no central server
 Programmers make changes and push them to or pull them

from other repositories
 All operations are designed to be fast
 Torvalds did a pretty good job, but some common tasks are

confusing

Working
Directory

Staging
(Index)

Local
Repository

Remote
Repository

Add Commit Push

FetchReset

Pull

It's all possible to reset to an earlier commit, overwriting the working directory, but it's
confusing to put that arrow in.

 GitHub.com provides online repositories for code
 Private repositories (except for education) are not free
 Public repositories are free

 Git can be used without GitHub
 GitHub can even be used without Git (since it has support for SVN)
 Git has nice tools for:
 Visualizing who's committing and how much they have changed
 Issue tracking
 Writing commit information and Read Me files
 Pushing and pulling repos stored on GitHub
 Creating webpages related to releasing software

 Ironically, Linus Torvalds hates GitHub

 Stakeholders are anyone affected by a product or its
development
 Customers are the people that pay for a product
 Users are people who interact with the product
 Clients are people for whom software was created (includes both

customers and users)
 Developers are all the people who work on the project
 Regulators are responsible for ensuring that software meets

standards
 Marketers stand in for clients when making mass-market products

 A stakeholder need is a feature that one or more
stakeholders want

 Sometimes, these needs are written in descriptions called
needs specifications

 Then, developers have to wrangle all of these conflicting,
incomplete, and vague needs into a requirements
specification

 Traditional methods may have a specific person who does this
 Titles like requirements analyst, requirements specialist, user

interaction designer

 It's common to divide requirements into functional and non-
functional categories

 Functional requirements are about how software takes input
and turns it into output, its behavior
 Appearance
 User interface actions
 Input and output processes

 Most requirements are functional requirements, and they take
the most time and effort to specify

 Non-functional requirements describe the properties software must
have
 Speed of processing
 Amount of memory used
 How often failures can be permitted
 Level of security
 Ease of modification
 Cost of development
 Platforms the product must run on

 Non-functional requirements are more abstract than functional
requirements

 Functional requirements are tied to specific pieces of code, but non-
functional requirements are properties of the whole system

 It's really hard to figure out all the requirements before doing
any coding and looking at prototypes

 The world changes quickly, especially in technology, and
people's desires change

 Writing all the requirements takes a lot of work, creates large
documents, and costs a lot of money

 The waterfall process means that nothing is ready for a long
time (often years) after the project starts, and some projects
get canceled

 Agile developers try not to write requirements at all
 But you have to start with something...

 Stakeholder needs are turned into lists called product
backlogs

 A product owner adds to the product backlogs and prioritizes
them

 High priority items are chosen for each sprint, the agile term
for a development iteration

 Delay choosing requirements as long as possible
 Stakeholder needs can be easily added or removed from the product backlog
 Requirements are set only for the product backlog items (PBIs) when they're

implemented on a sprint
 Delay refinement as long as possible
 PBIs are broken down until they're small enough and detailed enough for a single sprint
 User-level requirements are refined into operational- and physical-level requirements

for the sprint where they're implemented
 Avoid writing requirements altogether
 Instead of writing down physical-level requirements, talk to the stakeholders and

implement what they say in the sprint
 Determine requirements in light of current product features
 Because agile methods iterate on an existing product, everyone can see which features

would be most useful next

 Specifications are usually made in declarative English (or
appropriate natural language) sentences

 Problem: English is vague and confusing
 Rules for good technical writing:
 Write complete, simple sentences in the active voice
 Define terms clearly and use them consistently
 Avoid synonyms
 Group related material into sections
 Use tables, lists, indentation, white space, and other formatting aids

 Use "must" or "shall" to describe behaviors the product must do

 Requirements should be testable or verifiable
 This means that there can be a process for testing whether the

product meets the requirement
 Bad requirement:
 The product must display query results quickly.

 Good requirement:
 The product must display query results in less than one second.

 The bad requirement isn't testable because "quickly" is subjective
 The good requirement is testable because we can time the

finished system

 We want a clear relationship between a requirement, a part of the design,
the code that implements this design, and the tests that verify it

 Being able to connect the requirements to later stages of development is
called requirements traceability

 To make requirements more traceable, each specification should state
only a single requirement
 This kind of specification is called atomic

 Non-atomic specification:
 The product must display a list of previous commands and the results of

commands, each in its own window.
 The goal is simplicity and clarity
 A long list of simple requirements is better than a short list of confusing,

complex requirements

 Agile developers have some documents like product vision statements
and product backlog items

 A very common way to describe requirements is through user stories
 A user story describes a function that the product provides to users
 Sometimes a big story that is a huge chunk of the application is called an

epic
 Sometimes a story that would take several sprints to implement is called

a feature
 A story that can be implemented in a single sprint is a sprintable story or

an implementable story
 Note: Some agile people only use the term user story for sprintable

stories

 A common way of expressing user stories is user voice form:
 As a <role>, I want to <activity> so that <benefit>.
 <role> is replaced by a user role, which is some category of user
 <activity> is a function that the system does
 <benefit> shows the value of the activity but is an optional part of

user voice form
 Example:
 As a payroll clerk, I want to enter salary data so that payrolls will use

adjusted salaries.

 It can be difficult to discover what stakeholders actually want from a
product

 Some approaches:
 Interviews: Ask individual stakeholders what they want and record the answers
 Observation: Watch the users doing tasks, asking them to describe the actions

they're taking
 Focus groups: Informal discussion with six to nine people and a facilitator
 Workshops: A meeting focused on documenting the desires of many

stakeholders
 Prototypes: Let stakeholders respond to different version of a product
 Document studies: Read documents associated with the business that needs

the product
 Competitive product studies: Analyze similar existing products for strengths

and weaknesses

 Agile processes don't focus on getting all the requirements up
front

 Instead, a cornerstone of the agile approach is constantly getting
feedback, allowing for quick responses

 The product itself becomes an evolving prototype that it easy to
understand and unlikely to become obsolete

 Potential problems:
 Stakeholders can overreact to current problems and lose sight of the big

picture
 Agile methods give a lot of power to the few stakeholders who give

feedback, and others might be ignored

 Projects start with a product mission statement giving
business requirements

 Requirements analysis is the process of gathering stakeholder
needs and using them to turn the mission statement into a list
of requirements specifications

 The result is a document called a software requirements
specification (SRS)

 The mission statement or other high-level needs are used to
write big user stories

 Working with stakeholders, the team refines sprintable stories
into operational-level and physical-level requirements

 The product owner has the responsibility to update the
product backlog as the product evolves

Model Show Typical UML Diagram

Use Case
Models

A product interacting with its environment,
often actors who take on roles

Use Case Diagram

Conceptual
Models

Relationships between entities Class Diagram

State Diagrams
The states a product can be in and the
transitions between those states

State Diagram

Decision Trees
and Tables

What a product should do under various
conditions

Activity Diagram

Data Flow
Diagrams

How data enters, is processed, and leaves
the product

Activity Diagram or
Sequence Diagram

 At both the requirements stage and the design stage,
modeling can be useful

 Modeling mostly means drawing boxes and arrows
 We want high-level descriptions of:
 What the thing is supposed to do
 What parts it's composed of
 How it does what it does

 Models leave out details
 Models are useful to help understand a complex system
 During requirements engineering, models clarify what an existing system

does
 Or models could be used to plan out a new system

 Models can represent different perspectives of a system:
 External: the context of a system
 Interaction: the interactions within the system or between it and the

outside
 Structural: organization of a system
 Behavior: how the system responds to events

 The Unified Modeling Language (UML) is an international
standard for graphical models of software systems

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams

 Class diagrams are important enough that we'll talk about
them in greater detail

 Activity diagrams show the workflow of
actions that a system takes

 XKCD of an activity diagram for writing good
code
 From: https://xkcd.com/844/

 Formally:
 Rounded rectangles represent actions
 Diamonds represent decisions
 Bars represent starting or ending concurrent

activities
 A black circle represents the start
 An encircled black circle represents the end

https://xkcd.com/844/

 Data-driven models show how input data is processed to generate
output data

 The following is an activity diagram that shows how blood sugar
data is processed by a system to deliver the right amount of
insulin

 Use case diagrams show
relationships between users of a
system and different use cases
where the user is involved

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:Use_case_restaurant_model.svg

 Sequence diagrams show system
object interactions over time

 These messages are visualized as
arrows
 Solid arrow heads are synchronous

messages
 Open arrow heads are

asynchronous messages
 Dashed lines represent replies

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:CheckEmail.svg

 State diagrams are the UML
generalization of finite state
automata from discrete math

 They describe a series of states
that a system can be in and how
transitions between those states
happen

 Example from uml-diagrams.org:

https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine

 Event-driven modeling is
another kind of behavioral
modeling that focuses on
how a system responds to
events rather than on
processing a stream of
data

 Here's a state diagram for
a microwave oven based
on various outside events

 Class diagrams show many kinds of relationships
 The classes being described often (but not always)

map to classes in object-oriented languages
 The following symbols are used to mark class

members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg

 Associations between classes can
be drawn with a line in a class
diagram

 Notations can be used to mark
relationships as one to one, many
to one, many to many, etc.

 These kinds of relationships are
particularly important when
designing a database

 Classes can be listed with their
attributes

 However, there are often classes
that share attributes with each
other

 Some classes are specialized
versions of other classes, with
more attributes and abilities

 This relationship between general
classes and more specialized
classes is handled in Java by the
mechanic of inheritance

 Another way of using class
diagrams is to show that some
objects or classes are made up
of smaller parts represented
by other classes

 A diamond shape is used to
mark a class that is the whole,
and its parts are connected to
the diamond

Requirements

Design

Implementation

Testing

Maintenance

SRS

SDD

Code
Software
Product

Product
Vision

• Rounded rectangles are actions (tasks)
• Squared rectangles are documents (data)

 The whole product is specified
 The project to create it is planned early
 This approach is important for large and complicated

products from a management perspective
 Size, cost, delivery dates, etc.

 By comparing to the plan, it's easy to tell if a product is on-
time and on-budget

 If it isn't, managers can take actions
 Increase time, increase budget, reduce scope, etc.

 If each step is done completely and correctly, all mistakes are
found before moving on to the next step
 This ends up being the major disadvantage of waterfall, too, since

mistakes usually propagate to future steps
 Good documentation is created for each step
 This is really important when new people are added to the project

 Each phase is distinct, allowing it to be carried out by teams
that specialize in that phase
 For multiple projects, appropriate teams can be scheduled for

maximum efficiency

 Requirements can't change
 But they usually do
 If requirements change, all the advantages of waterfall's

predictability disappear too
 Even when requirements stay the same, it's hard to be

complete and consistent in documenting them
 Creating all the documentation for waterfall is expensive
 If you have separate teams for each phase, each team has to

learn what has already been done

 Because there are so many teams, a lot of management is
needed
 Drives up the cost
 Heavyweight processes are ones with a lot of documentation and

management
 There's no product until completion of the entire project
 Could take years
 We don't realize the problems until the product is available
 Clients might not want the product anymore

 Waterfall was the only process for a long time
 Its track record isn't great
 Success only about 25% of the time historically, but the rate is improving

 Waterfall only works when the requirements are stable
 Waterfall has a lot of overhead
 Might be justified for large projects
 Isn't justified for small projects

 Use waterfall only for large projects with stable requirements or
when there are very high safety, security, or reliability
requirements

 A prototype is a working model of a finished product
 It can model a part or the whole

 Prototypes can help offset problems with the waterfall model
 Prototypes are particularly helpful with testing out UI decisions
 Prototypes are easy(ish) to make and change
 Try out several!
 See which one is the better design

 Throwaway prototypes are just used for making specifications
and then thrown out

 Evolutionary prototypes are modified into the final product

 Prototypes can be used
within the waterfall
model

 Or they can be used for
an entirely prototype-
based lifecycle model:

 This idea is what
incremental and agile
processes are built
around

Design

Product
Vision

Implementation

Prototype

Demo and
Evaluation

Software
Product Complete Incomplete

 Changes to specifications are easy to handle
 Customers are more likely to get what they want (since they

get regular opportunities for feedback)
 Customers can get (potentially) useful software quickly
 Not much documentation or management is needed
 Lightweight development process

 Without the planning of a process like waterfall
 It's hard to predict a reasonable deadline for the final product
 It's hard to predict the budget

 Product design might be bad since the product evolved
without following a plan
 The biggest problem here is maintainability: How can new features

be added?
 An undisciplined process can have poor quality control
 The product might be unreliable or buggy

 A risk is an event with negative consequences
 Losing source code
 Losing a team member
 Finding an unexpected design flaw
 Underestimating the time needed to write a piece of code

 Business people think about risk a lot
 Risk management is identifying, analyzing, controlling, or

mitigating risks
 Risk management should be incorporated into all software

lifecycle processes

 An iterative process contains repeated tasks
 Example: While debugging code, you might run tests, do fixes, run

tests, do fixes, and so on
 An incremental process produces output in parts
 Processes can be either iterative or incremental, both iterative

and incremental, or neither
 The purest version of waterfall is neither
 It's not iterative because each phase is separate and not repeated
 It's not incremental because a working product is only available at

the end

 Iteration is the main way you get quality
 It's just so hard to get it right the first time!
 Software development still involves significant trial and error

 Even the waterfall model usually has iterative steps in practice
 Prototype evolution is iterative
 The problem with iteration is rework
 Redoing or throwing out previous work

 Iteration is found lurking everywhere to greater or lesser
degrees, but being incremental is more binary

 To be incremental, final products must be produced along the
way

 Waterfall is not incremental because the products produced
along the way are just used for the next step

 Versions of waterfall were the only commonly used software
development model until the 1990s

 A lot of people were unhappy with it
 In response, some developers created the Agile Manifesto, a

statement about developing software that was diametrically
opposed to waterfall

 The ideas caught on, and many developers embraced the idea,
creating a series of different methods

 Sometimes businesses claimed to be changing over to agile
methods but really just renamed parts of their waterfall approach

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to
value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value the
items on the left more.

 The ideas caught on, spawning specific methods such as Extreme
Programming, the Crystal Method, Dynamic System
Development Method, and Scrum

 These methods all have the following characteristics:
 Incremental process with increments ranging from a week to a few

months
 Customers are closely and continuously involved in the product
 Lightweight process minimizing documentation and management tasks
 Test driven, using automated test suites to avoid the problems of frequent

code change

 Agile processes are
similar, following a
lifecycle much like the
one on the right

Refine Specifications

Product
Vision

Deliverable
Product

Create Increment

Released

Improve Process

Evaluate Increment

Realization
Not Released

 Product specifications can change without destroying all the
work that's been done

 Customers get a software product quickly
 With new versions coming frequently

 Bad projects can be canceled early
 Time is saved because of lightweight requirements for

documentation and management
 Duplication of effort is usually reduced

 Customers have to be involved constantly, but most
customers don't want to spend their time giving feedback

 Continuous refinement of a product can lead to a bad design
through an evolution of ideas that seemed like a good idea at
the time

 For large projects, it's hard to coordinate many teams on a
product that is evolving unpredictably without documentation

 It's hard to predict the outcomes of agile methods

 Like other workflows, Scrum
can be modeled with an
activity diagram showing
familiar steps

 Everything is built around a
cycle called a sprint

 Because sprints repeat, the
process is iterative

 Because each sprint
produces a shippable
product, the process is
incremental

Create Product
Backlog

Product
Vision

Product
Backlog

Shippable
Product

Sprint
Backlog

Sprint Review

Sprint Execution

Product
Backlog

Sprint
Backlog

Sprint Retrospective

Product
Backlog

Sprint Planning

Project DoneProject Not Done

 Recall that agile methods are built around a product backlog,
containing high-level descriptions of the desired features of the
product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next

sprint better

 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything

 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog

 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process

 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria

 In addition to the specification of functionality, every PBI
should have a priority

 Priorities express how important the PBI is and can be
expressed as a number or a rubric (low, medium, high, critical)

 The PO sets the priorities based on stakeholder feedback
 Dependencies also determine priorities: If X is needed for Y,

then the priority of X must be at least as high as Y
 High-priority PBIs should be small enough to do in a single

sprint

 Each PBI must have an effort estimate
 High-priority, sprintable PBIs need precise estimates (such as

person-days), to aid in sprint planning
 Low-priority, abstract PBIs are further from sprintable status

and only need rough estimates (small, medium, large,
gigantic)

 As PBIs are refined, their effort estimates need to become
more precise

 How do we know when a PBI is done?
 Acceptance criteria are checks a user can do to see if a PBI is

finished and correct
 Often, these form a test suite used by developers
 Following the same pattern of steady refinement, high-

priority PBIs should have detailed acceptance criteria
 These acceptance criteria might be further refined during the sprint

 Refining or grooming the product backlog means:
 Adding, removing, or modifying PBIs
 Making PBIs nearing the top of the product backlog more detailed
 Re-estimating and re-prioritizing PBIs
 Adding acceptance criteria to PBIs

 Refinement happens during sprint review
 It should happen at least once during a sprint to make sure there

are enough sprintable stories for the next sprint
 A PO can use a spreadsheet to manage the product backlog, but

there are also specialized tools

 Two pieces of information are needed: The size of the job and
the speed of the team

 PBIs are estimated by story points or ideal hours
 One or two story points is supposed to be how much effort

the smallest stories take
 Bigger stories are estimated relative to that size

 An ideal hour or a person hour is the amount an average
developer can accomplish in one uninterrupted hour of work

 Story points are more commonly used, since they're easier to
estimate

 Velocity is the amount of work done per sprint
 After a sprint, story points or ideal hours can be added up to

see how much got done
 Past velocities can be used as a guide for how many story

points can get done when planning the next sprint
 Ideally, tracking this information will help get better estimates

of story points and ideal hours for other stories and also a
better estimate of team velocity

 Sprinting is actually doing the implementation
 Sprinting is considered a time-boxing technique, where the

amount of work done is based on the time available
 Rather than letting time expand as needed to finish a task

 For a given project (and at a given company) sprints are usually
the same length, somewhere between a week and a month

 Short, consistent sprints are easier to plan and track and give
rapid feedback

 If PBIs can't be finished during a sprint, they go back on the
product backlog

 If a team finishes all PBIs before the sprint is over, they can get
another one from the PO

 At the end of a sprint, there is a sprint review to reflect on how
the product is changing

 All stakeholders are invited
 Sprint review outline:
 Starts with the overall sprint goal and the PBIs in the sprint backlog
 Team lists the PBIs completed and explains why some didn't get

done
 New aspects of the product are demonstrated
 Everyone discusses how to make the product better

 Results of the review are used for planning the next sprint

 At the end of a sprint, there's also a sprint retrospective
 Only the development team, including the PO and the SM, are

invited
 The retrospective is for analyzing how the team is working and

how to improve
 Improvements tend to be clear when a new team is working on a

new product
 It may still take several sprints for an improvement to get fully integrated

into the process
 Over time, the team can become comfortable with the process,

but finding improvement opportunities is still important

 Quality assurance (QA) is a system for making sure the product
satisfies stakeholder needs

 QA focuses on two distinct goals:
 Validation
 Testing if the product satisfies stakeholder needs
 "Are we building the right product?"
 Example: Does the customer want steak and fries?

 Verification
 Testing if the product satisfies needs properly
 "Are we building the product right?"
 Example: Are the steak and fries cooked well?

 There is no one way to prevent defects
 Instead, preventing defects must be built into the software

development processes that the entire organization uses
 Process improvement is making a process better
 Training and education are necessary

 Process guides such as documentation standards and style
guides help

 Using well-studied design methodologies (such as OOP) can
help

 Reusing design architectures that have been successful in the
past can prevent defects
 Examples: MVC and pipe-and-filter

 Design patterns are standard patterns for OOP classes
 Examples: decorator and factory

 Using well-studied algorithms and data structures helps a
great deal

 Reusing code (often from libraries) is smart, especially since
those libraries have been tested thoroughly

 Formal methods include systems for mathematically
checking that code does what it's supposed to
 Not all code can be modeled mathematically
 Yet some of these systems have found bugs in real software, such as

TimSort, the most commonly used sort in Python and Java
 Prototypes let us explore what defects might happen before

putting them in the final product
 The opposite end of the spectrum from formal methods, since

prototypes are practical rather than theoretical

 Many tools help reduce defects
 Version control tools help track code over time
 Configuration management tools allow changes in one tool to

automatically update other tools
 Examples: Puppet and Ansible

 Integrated development environments (IDEs), once called
computer aided software engineering (CASE) tools, can integrate
many useful tools for defect prevention
 Syntax highlighting
 Two-way translation between code and UML models
 Style checking

 A good process can't keep out all defects
 Some defects will show up and must be found and removed
 Defect detection and removal techniques fall into two

categories:
 Review and correct
 Test and debug

 Review and correct methods look at the code while test and
debug methods look at the product in operation

 There's a formal name for just looking at your code for errors: a
desk check

 A walkthrough is when you explain your code to someone else
 An inspection is a more formal process with trained inspectors
 Inspection roles:
 Moderator schedules and runs the meeting and distributes the code
 Author of the code
 Reader who guides the meeting
 Recorder who takes notes
 Inspectors who check code before and during the meeting

 Testing software helps find cases that are not obvious from
looking at the code

 Software testing has some jargon:
 A failure is a deviation between actual behavior and intended

behavior
 A fault is a defect that can give rise to a failure
 A trigger is a condition that causes a fault to result in a failure
 A test case is a set of inputs and program states
 A collection of test cases is a test suite

 Debugging is using trigger conditions to find and fix faults

System Testing

 Unit tests test a small piece of code (method
or class) in isolation from other code
 Often done by the author

 Integration tests test several small pieces of
code together
 By the author, a testing team, or both

 Alpha and beta tests test the whole product
 Alpha tests usually have a testing team
 Beta tests include users

Unit
Testing

Integration
Testing

Alpha
Testing

Beta
Testing

Defect
Elimination

Defect
Prevention

Process Guides

Analysis and Design Methods

Reference Architectures

Design Patterns

Data Structures and Algorithms

Software Reuse

Prototyping

Version Control

Configuration Management

IDE Tools

Training and Education

Defect
Detection
and Removal

Review and Correct Style and Standards Checkers

Spelling and Grammar Checkers

Reviews
• Desk Checks
• Walkthroughs
• Inspections

Test and Debug Regression Testing

Unit Testing

Integration Testing

System Testing
• Alpha Testing
• Beta Testing

 Interaction design is planning out the user experience (UX) for a
software product

 It cares about how the product looks and sounds (and, one day, smells?)
and how the user gets output and puts input into it

 This field used to get little attention from computer scientists, but it's
really important
 Apple is a great posterchild for showing off the value of UX
 Even Microsoft, maligned for its user interfaces, has invested lots of money

studying how to make windows and icons easier to use
 UX is part of the field of human computer interaction (HCI), which

combines ergonomics, physiology, psychology, and graphic design with
computer science

 The quality of a user interface is called its usability

 Effectiveness: User can access all the features they need
 Efficiency: Users can achieve their goals quickly
 Safety: Users and computers aren't harmed
 Learnability: Users become proficient quickly
 Memorability: Users regain proficiency quickly after time

away from the product
 Enjoyability: Users experience positive emotions when using

the product
 Beauty: Users find the product aesthetically pleasing

 Before coding the UX, models are incredibly helpful to plan
out how it looks and behaves

 Static interaction design models show the audio and visual
parts of the product that don't change during execution

 Dynamic interaction design models show behavior during
execution

 Both are useful

 A use case is an interaction
between a product and its
environment

 An actor is an agent that
interacts with a product

 Use case diagrams (which
we've seen before) are static
interaction design models
that represent the actors that
interact with use cases

 Screen layout diagrams
and page layout
diagrams are drawings of
a product's visual display

 A wireframe is a low-
fidelity version that gives a
rough layout without a lot
of detail

 It's good to start with a
wireframe and refine it
with more detail later

 A use case diagram
shows which actors
interact with use cases

 However, it doesn't
explain what they do

 A use case description is
formatted text that
explains the actions that
an actor makes

 The use case description
is a dynamic interaction
design model

 Example template:

Use Case Name To identify the use case

Actors The agents participating in the use case

Stakeholders and
Needs

What this use case does to meet stakeholder
needs

Preconditions What must be true before this use case begins

Post conditions What will be true when this use case ends

Trigger The event that causes this use case to begin

Basic Flow
The steps in a typical successful instance of this
use case

Extensions
The steps in alternative instances of this use case
due to variations in normal flow or errors

 Design principles favor certain characteristics to make a design better
 SAC principles are three general interaction design principles
 Simplicity
 Simple designs are better
 Lots of options are confusing for the user
 It's better to make commonly used options easy and require a little more work for

unusual options
 Accessibility
 Designs that can be used be more people are better
 Considerations: color blindness, things too small to see or interact with

 Consistency
 Designs that present data in similar ways are better
 Example: use consistent navigation controls

 CAP principles are focused on appearance
 Contrast
 Designs that make different things obviously different are better
 Example: italics and bold
 Example: font size to distinguish headings from text

 Alignment
 Designs that line up on a grid are better
 Indentation is useful

 Proximity
 Designs that group related things together are better

 FeVER principles are about behavior
 Feedback
 Designs that acknowledge user actions are better
 Otherwise, how do you know if what you're doing has an effect?

 Visibility
 Designs that display their state and available operations are better
 Are we in Arm Bomb or Disarm Bomb mode?

 Error Prevention and Recovery
 Designs that prevent user errors and allow error recovery are better
 Prevention example: disable buttons that shouldn't be pressed
 Recovery example: allow undo or ask "Are you sure?" before doing something

dangerous

 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that

 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand,

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your

hand
 Of course, it is often impossible to follow these guidelines

 Each module should shield the internal details of its operation from other
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide

data (and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other thins
 Modules that hide information are easier to understand, test, and reuse because

they stand on their own
 Modules that hide information are more secure and less likely to be affected by

outside errors
 This is why we use mutators and accessors instead of making members

public

 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific
problem or set of classes

 Using interfaces helps

 Module cohesion is how much the stuff in the module is
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information

possible about other classes
 More module cohesion usually leads to looser module

coupling
 Sometimes a module being hard to name suggests that its

data or operations are not cohesive

 The design process is a microcosm of
the larger software development
process

 The steps are analyzing the problem,
proposing solutions (and looking up
existing solutions to similar problems),
and evaluating the solutions (perhaps
combining different solutions) until a
design is selected

Analyze Design
Problem

Design
Problem

Generate and
Improve Candidate

Designs

Evaluate Candidate
Designs

Select Design

Design
Specification

Adequate

Inadequate

Finalize Design

 Architectural design is specifying a
program's major components

 Architectural design is often modeled
with a box-and-line diagram (also
called a block diagram)
 Components are boxes
 Relationships or interactions between

them are lines
 Unlike UML diagrams, box-and-line

diagrams have no standards
 Draw them in a way that communicates

your design

 The Model-View-Controller (MVC)
style fits many kinds of web or GUI
interactions

 The model contains the data that is
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the

model and selects which view to use
 The Java Swing GUI system is built

around MVC
 Good: greater independence between

data and how it's represented
 Bad: additional complexity for simple

models

 Organize the system into layers
 Each layer provides services to layers

above it, with the lowest layer being the
most fundamental operations

 Layered styles work well when adding
functionality on top of existing systems

 Good: entire layers can be replaced as
long as the interfaces are the same

 Bad: it's hard to cleanly separate layers,
and performance sometimes suffers

 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure

 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be

unpredictable

 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for

component reuse
 Bad: each component has to agree on formatting with its inputs and

outputs

 Class diagrams are made up of class symbols (rectangles)
 These class symbols contain one or more compartments
 The top compartment has the class name
 A second, optional compartment often contains attributes

(called member variables in Java classes)
 Often followed by a colon with the type

 A third, optional compartment often contains operations
(called methods in Java classes)
 Sometimes followed by parameter and return types

 Visibility modifiers can be marked:
 + for public
 # for protected
 ~ for package
 - for private

 Only important attributes and operations need to be
specified
 Classes might contain others that aren't shown

 Inheritance is shown with the generalization connector
 A solid line from the child class to a solid triangle connected to the parent class
 Confusingly, this means that children classes point at their parent classes

 Interfaces look like classes but are marked with «interface» above the class name
 This kind of marking is called a stereotype
 Stereotypes show extra information that wasn't part of the original UML class diagram specification

 Classes that implement interfaces have dashed lines leading to a solid triangle connected to
the interface

 Associations are show with lines between classes
 Associations can be labeled to explain them
 The lines can be marked with the multiplicity, showing

how many of each class can be associated with the other
 The multiplicity can be comma separated lists or ranges,

and * means zero or more
 When a class is part of another class, the part is

connected by a line and a diamond (the
aggregation connection) to the whole

From visual-paradigm.com

 Finish review on Wednesday
 Presentations on Friday!

 Finish Project 4 for Friday
 Don't forget Assignment 4 is also due on Friday!
 Review for Final Exam on Wednesday

	COMP 3100
	Last time
	Questions?
	Final exam format
	Review
	Managerial software engineering concerns
	Technical software engineering concerns
	Management
	Aspects of a project that must be managed
	Software development methods
	Requirements and design
	Implementation
	Version Control
	Version control
	Repository
	Actions
	Philosophy of Git
	Git process
	GitHub
	Requirements
	Stakeholders
	Stakeholder needs
	Functional requirements
	Non-functional requirements
	Problems with requirements in traditional processes
	Requirements in agile processes
	How Scrum tries to make changing requirements cheap and easy
	Stating specifications in traditional processes
	Testable requirements
	Requirements traceability
	Stating specifications in agile processes
	User voice form
	Eliciting stakeholder needs in traditional processes
	Eliciting stakeholder needs in agile processes
	Requirements management in traditional processes
	Requirements management in agile processes
	Kinds of requirements modeling
	UML
	Modeling
	System modeling
	UML
	Activity diagrams
	More detailed activity model
	Data-driven modeling
	Use case diagrams
	Sequence diagrams
	State diagrams
	Event-driven modeling
	Class diagrams
	Relationships
	Generalization
	Aggregation
	Software Processes
	Waterfall lifecycle model
	Advantages of waterfall
	More advantages of waterfall
	Disadvantages of waterfall
	More disadvantages of waterfall
	To waterfall or not to waterfall?
	Prototyping
	Prototyping process
	Advantages of prototyping
	Disadvantages of prototyping
	Risk management
	Iterative and Incremental Processes
	Iterative and Incremental Processes
	Iterative processes
	Incremental processes
	Agile
	Agile manifesto
	Agile characteristics
	Agile lifecycle
	Agile advantages
	Agile disadvantages
	Scrum
	Scrum process
	Sprints
	Scrum roles
	Scrum artifacts
	Scrum activities
	Managing the product backlog
	PBI priorities
	PBI effort estimates
	PBI acceptance criteria
	Product backlog refinement
	Estimating work and timeline
	Velocity
	Sprinting
	Sprint review
	Sprint retrospective
	Software Quality Assurance
	Quality assurance
	Defect prevention
	Reusing ideas
	Formal methods and prototypes
	Tools
	Defect detection and removal
	Review and correct methods
	Test and debug
	Overview of testing
	Breaking it all down
	User Interaction Design
	Interaction design
	User interaction design goals
	Interaction design models
	Use case diagrams
	Layout diagrams
	Use case descriptions
	SAC principles
	CAP principles
	FeVER principles
	Software Engineering Design
	Simplicity
	Small modules
	Information hiding
	Minimize module coupling
	Maximize module cohesion
	Design process
	Architectural design
	Model-View-Controller
	Layered style
	Repository style
	Client-server architecture
	Pipe and filter style
	Detailed Design
	More depth on class diagrams
	Inheritance and interfaces in class diagrams
	Other associations
	Complex example
	Upcoming
	Next time…
	Reminders

