
Week 15 - Monday

 What did we talk about last time?
 Mostly work days
 Before that:
 Execution and control
 Earned value management
 Planned Value, Earned Value, Actual Cost
 Burn charts

 Time: Friday, 12/13/2024 2:45 - 4:45 p.m.

 The exam will have:
 Short answer questions
 At least one matching question
 One or two diagrams or figures you must create
 Two to three essay questions

 Managerial concerns are about organization and control
 Project cost
 Time estimation
 Scheduling and tracking
 Team management
 Risk management
 Quality

 Technical concerns are about what product, how to build it, and
building it
 Software requirements
 Design
 Programming languages and environments
 Coding standards
 Defect prevention, detection, and removal
 Version control
 Documentation
 Maintenance

 Scope
 How much the project is trying to accomplish
 Creep is the tendency for the work to increase

 Time
 Must be reasonable for the project size
 Must be monitored

 Cost
 Similar issues as with time

 Quality
 How good is acceptable?
 Quality assurance must be done through the project, not just at the end

 Resources
 Do you have the people (and tools) to get the job done?

 Risks
 Have you planned for things going wrong?

 Traditional methods
 Careful planning and hierarchical leadership
 Steps like requirement specification, design, implementation, testing, and maintenance
 Example: Waterfall model

 Agile methods
 Constant iteration
 Self-directed teams
 Minimal documentation
 Example: Scrum

 Both methods are widely used and many successful teams use aspects of both
 The project for this class will mostly employ traditional methods because agile

works best with experienced developers

 Requirements are functions or characteristics that software
has

 Customers or users determine the requirements
 Stakeholder is a broad term that includes customers, users,

developer, managers, and maybe the public
 Designs specify how the software system will meet the

requirements
 Designs can look at a system from different aspects
 Design patterns are standard solutions to problems that have

been useful in the past and can help structure designs

 After the design is made, the software must be implemented
in one or more programming languages

 Compilers and interpreters are used to run the programs
 Editors allow people to write code
 Version control tools let people track the evolution of the

code
 Code checkers see if the code is meeting certain standards
 Debuggers help programmers find mistakes

 For any large software project (and even small ones), it's
valuable to have a way to track changes over time

 Such tools are called version control systems
 They allow:
 Changes to be tracked over time
 Developers to check code into repositories
 Comparison of files over time
 Documentation of changes made

 It's more than just a glorified backup system

 A repository is where all the development data is stored
 Usually called repos by professionals

 Repositories include the current source code as well as a
history of all the changes ever made

 For source code, most version control systems use delta
compression, meaning that only the differences between files
are stored

 Thus, hundreds of versions of your code can be stored without
taking up hundreds of times the space

 Committing a file is adding its changes to a repository
 Cloning means creating a copy of another repository,

including history
 Merging is combining two sets of files with independent

changes into one set with changes from both
 Pulling (or fetching) copies the changes from an outside

repository and adds them to the current repository
 Pushing copies the changes from the current repository to an

outside repository

 Git is a distributed VCS
 Every computer has a complete history of all the changes,

ever
 There's no central server
 Programmers make changes and push them to or pull them

from other repositories
 All operations are designed to be fast
 Torvalds did a pretty good job, but some common tasks are

confusing

Working
Directory

Staging
(Index)

Local
Repository

Remote
Repository

Add Commit Push

FetchReset

Pull

It's all possible to reset to an earlier commit, overwriting the working directory, but it's
confusing to put that arrow in.

 GitHub.com provides online repositories for code
 Private repositories (except for education) are not free
 Public repositories are free

 Git can be used without GitHub
 GitHub can even be used without Git (since it has support for SVN)
 Git has nice tools for:
 Visualizing who's committing and how much they have changed
 Issue tracking
 Writing commit information and Read Me files
 Pushing and pulling repos stored on GitHub
 Creating webpages related to releasing software

 Ironically, Linus Torvalds hates GitHub

 Stakeholders are anyone affected by a product or its
development
 Customers are the people that pay for a product
 Users are people who interact with the product
 Clients are people for whom software was created (includes both

customers and users)
 Developers are all the people who work on the project
 Regulators are responsible for ensuring that software meets

standards
 Marketers stand in for clients when making mass-market products

 A stakeholder need is a feature that one or more
stakeholders want

 Sometimes, these needs are written in descriptions called
needs specifications

 Then, developers have to wrangle all of these conflicting,
incomplete, and vague needs into a requirements
specification

 Traditional methods may have a specific person who does this
 Titles like requirements analyst, requirements specialist, user

interaction designer

 It's common to divide requirements into functional and non-
functional categories

 Functional requirements are about how software takes input
and turns it into output, its behavior
 Appearance
 User interface actions
 Input and output processes

 Most requirements are functional requirements, and they take
the most time and effort to specify

 Non-functional requirements describe the properties software must
have
 Speed of processing
 Amount of memory used
 How often failures can be permitted
 Level of security
 Ease of modification
 Cost of development
 Platforms the product must run on

 Non-functional requirements are more abstract than functional
requirements

 Functional requirements are tied to specific pieces of code, but non-
functional requirements are properties of the whole system

 It's really hard to figure out all the requirements before doing
any coding and looking at prototypes

 The world changes quickly, especially in technology, and
people's desires change

 Writing all the requirements takes a lot of work, creates large
documents, and costs a lot of money

 The waterfall process means that nothing is ready for a long
time (often years) after the project starts, and some projects
get canceled

 Agile developers try not to write requirements at all
 But you have to start with something...

 Stakeholder needs are turned into lists called product
backlogs

 A product owner adds to the product backlogs and prioritizes
them

 High priority items are chosen for each sprint, the agile term
for a development iteration

 Delay choosing requirements as long as possible
 Stakeholder needs can be easily added or removed from the product backlog
 Requirements are set only for the product backlog items (PBIs) when they're

implemented on a sprint
 Delay refinement as long as possible
 PBIs are broken down until they're small enough and detailed enough for a single sprint
 User-level requirements are refined into operational- and physical-level requirements

for the sprint where they're implemented
 Avoid writing requirements altogether
 Instead of writing down physical-level requirements, talk to the stakeholders and

implement what they say in the sprint
 Determine requirements in light of current product features
 Because agile methods iterate on an existing product, everyone can see which features

would be most useful next

 Specifications are usually made in declarative English (or
appropriate natural language) sentences

 Problem: English is vague and confusing
 Rules for good technical writing:
 Write complete, simple sentences in the active voice
 Define terms clearly and use them consistently
 Avoid synonyms
 Group related material into sections
 Use tables, lists, indentation, white space, and other formatting aids

 Use "must" or "shall" to describe behaviors the product must do

 Requirements should be testable or verifiable
 This means that there can be a process for testing whether the

product meets the requirement
 Bad requirement:
 The product must display query results quickly.

 Good requirement:
 The product must display query results in less than one second.

 The bad requirement isn't testable because "quickly" is subjective
 The good requirement is testable because we can time the

finished system

 We want a clear relationship between a requirement, a part of the design,
the code that implements this design, and the tests that verify it

 Being able to connect the requirements to later stages of development is
called requirements traceability

 To make requirements more traceable, each specification should state
only a single requirement
 This kind of specification is called atomic

 Non-atomic specification:
 The product must display a list of previous commands and the results of

commands, each in its own window.
 The goal is simplicity and clarity
 A long list of simple requirements is better than a short list of confusing,

complex requirements

 Agile developers have some documents like product vision statements
and product backlog items

 A very common way to describe requirements is through user stories
 A user story describes a function that the product provides to users
 Sometimes a big story that is a huge chunk of the application is called an

epic
 Sometimes a story that would take several sprints to implement is called

a feature
 A story that can be implemented in a single sprint is a sprintable story or

an implementable story
 Note: Some agile people only use the term user story for sprintable

stories

 A common way of expressing user stories is user voice form:
 As a <role>, I want to <activity> so that <benefit>.
 <role> is replaced by a user role, which is some category of user
 <activity> is a function that the system does
 <benefit> shows the value of the activity but is an optional part of

user voice form
 Example:
 As a payroll clerk, I want to enter salary data so that payrolls will use

adjusted salaries.

 It can be difficult to discover what stakeholders actually want from a
product

 Some approaches:
 Interviews: Ask individual stakeholders what they want and record the answers
 Observation: Watch the users doing tasks, asking them to describe the actions

they're taking
 Focus groups: Informal discussion with six to nine people and a facilitator
 Workshops: A meeting focused on documenting the desires of many

stakeholders
 Prototypes: Let stakeholders respond to different version of a product
 Document studies: Read documents associated with the business that needs

the product
 Competitive product studies: Analyze similar existing products for strengths

and weaknesses

 Agile processes don't focus on getting all the requirements up
front

 Instead, a cornerstone of the agile approach is constantly getting
feedback, allowing for quick responses

 The product itself becomes an evolving prototype that it easy to
understand and unlikely to become obsolete

 Potential problems:
 Stakeholders can overreact to current problems and lose sight of the big

picture
 Agile methods give a lot of power to the few stakeholders who give

feedback, and others might be ignored

 Projects start with a product mission statement giving
business requirements

 Requirements analysis is the process of gathering stakeholder
needs and using them to turn the mission statement into a list
of requirements specifications

 The result is a document called a software requirements
specification (SRS)

 The mission statement or other high-level needs are used to
write big user stories

 Working with stakeholders, the team refines sprintable stories
into operational-level and physical-level requirements

 The product owner has the responsibility to update the
product backlog as the product evolves

Model Show Typical UML Diagram

Use Case
Models

A product interacting with its environment,
often actors who take on roles

Use Case Diagram

Conceptual
Models

Relationships between entities Class Diagram

State Diagrams
The states a product can be in and the
transitions between those states

State Diagram

Decision Trees
and Tables

What a product should do under various
conditions

Activity Diagram

Data Flow
Diagrams

How data enters, is processed, and leaves
the product

Activity Diagram or
Sequence Diagram

 At both the requirements stage and the design stage,
modeling can be useful

 Modeling mostly means drawing boxes and arrows
 We want high-level descriptions of:
 What the thing is supposed to do
 What parts it's composed of
 How it does what it does

 Models leave out details
 Models are useful to help understand a complex system
 During requirements engineering, models clarify what an existing system

does
 Or models could be used to plan out a new system

 Models can represent different perspectives of a system:
 External: the context of a system
 Interaction: the interactions within the system or between it and the

outside
 Structural: organization of a system
 Behavior: how the system responds to events

 The Unified Modeling Language (UML) is an international
standard for graphical models of software systems

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams

 Class diagrams are important enough that we'll talk about
them in greater detail

 Activity diagrams show the workflow of
actions that a system takes

 XKCD of an activity diagram for writing good
code
 From: https://xkcd.com/844/

 Formally:
 Rounded rectangles represent actions
 Diamonds represent decisions
 Bars represent starting or ending concurrent

activities
 A black circle represents the start
 An encircled black circle represents the end

https://xkcd.com/844/

 Data-driven models show how input data is processed to generate
output data

 The following is an activity diagram that shows how blood sugar
data is processed by a system to deliver the right amount of
insulin

 Use case diagrams show
relationships between users of a
system and different use cases
where the user is involved

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:Use_case_restaurant_model.svg

 Sequence diagrams show system
object interactions over time

 These messages are visualized as
arrows
 Solid arrow heads are synchronous

messages
 Open arrow heads are

asynchronous messages
 Dashed lines represent replies

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:CheckEmail.svg

 State diagrams are the UML
generalization of finite state
automata from discrete math

 They describe a series of states
that a system can be in and how
transitions between those states
happen

 Example from uml-diagrams.org:

https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine

 Event-driven modeling is
another kind of behavioral
modeling that focuses on
how a system responds to
events rather than on
processing a stream of
data

 Here's a state diagram for
a microwave oven based
on various outside events

 Class diagrams show many kinds of relationships
 The classes being described often (but not always)

map to classes in object-oriented languages
 The following symbols are used to mark class

members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg

 Associations between classes can
be drawn with a line in a class
diagram

 Notations can be used to mark
relationships as one to one, many
to one, many to many, etc.

 These kinds of relationships are
particularly important when
designing a database

 Classes can be listed with their
attributes

 However, there are often classes
that share attributes with each
other

 Some classes are specialized
versions of other classes, with
more attributes and abilities

 This relationship between general
classes and more specialized
classes is handled in Java by the
mechanic of inheritance

 Another way of using class
diagrams is to show that some
objects or classes are made up
of smaller parts represented
by other classes

 A diamond shape is used to
mark a class that is the whole,
and its parts are connected to
the diamond

Requirements

Design

Implementation

Testing

Maintenance

SRS

SDD

Code
Software
Product

Product
Vision

• Rounded rectangles are actions (tasks)
• Squared rectangles are documents (data)

 The whole product is specified
 The project to create it is planned early
 This approach is important for large and complicated

products from a management perspective
 Size, cost, delivery dates, etc.

 By comparing to the plan, it's easy to tell if a product is on-
time and on-budget

 If it isn't, managers can take actions
 Increase time, increase budget, reduce scope, etc.

 If each step is done completely and correctly, all mistakes are
found before moving on to the next step
 This ends up being the major disadvantage of waterfall, too, since

mistakes usually propagate to future steps
 Good documentation is created for each step
 This is really important when new people are added to the project

 Each phase is distinct, allowing it to be carried out by teams
that specialize in that phase
 For multiple projects, appropriate teams can be scheduled for

maximum efficiency

 Requirements can't change
 But they usually do
 If requirements change, all the advantages of waterfall's

predictability disappear too
 Even when requirements stay the same, it's hard to be

complete and consistent in documenting them
 Creating all the documentation for waterfall is expensive
 If you have separate teams for each phase, each team has to

learn what has already been done

 Because there are so many teams, a lot of management is
needed
 Drives up the cost
 Heavyweight processes are ones with a lot of documentation and

management
 There's no product until completion of the entire project
 Could take years
 We don't realize the problems until the product is available
 Clients might not want the product anymore

 Waterfall was the only process for a long time
 Its track record isn't great
 Success only about 25% of the time historically, but the rate is improving

 Waterfall only works when the requirements are stable
 Waterfall has a lot of overhead
 Might be justified for large projects
 Isn't justified for small projects

 Use waterfall only for large projects with stable requirements or
when there are very high safety, security, or reliability
requirements

 A prototype is a working model of a finished product
 It can model a part or the whole

 Prototypes can help offset problems with the waterfall model
 Prototypes are particularly helpful with testing out UI decisions
 Prototypes are easy(ish) to make and change
 Try out several!
 See which one is the better design

 Throwaway prototypes are just used for making specifications
and then thrown out

 Evolutionary prototypes are modified into the final product

 Prototypes can be used
within the waterfall
model

 Or they can be used for
an entirely prototype-
based lifecycle model:

 This idea is what
incremental and agile
processes are built
around

Design

Product
Vision

Implementation

Prototype

Demo and
Evaluation

Software
Product Complete Incomplete

 Changes to specifications are easy to handle
 Customers are more likely to get what they want (since they

get regular opportunities for feedback)
 Customers can get (potentially) useful software quickly
 Not much documentation or management is needed
 Lightweight development process

 Without the planning of a process like waterfall
 It's hard to predict a reasonable deadline for the final product
 It's hard to predict the budget

 Product design might be bad since the product evolved
without following a plan
 The biggest problem here is maintainability: How can new features

be added?
 An undisciplined process can have poor quality control
 The product might be unreliable or buggy

 A risk is an event with negative consequences
 Losing source code
 Losing a team member
 Finding an unexpected design flaw
 Underestimating the time needed to write a piece of code

 Business people think about risk a lot
 Risk management is identifying, analyzing, controlling, or

mitigating risks
 Risk management should be incorporated into all software

lifecycle processes

 An iterative process contains repeated tasks
 Example: While debugging code, you might run tests, do fixes, run

tests, do fixes, and so on
 An incremental process produces output in parts
 Processes can be either iterative or incremental, both iterative

and incremental, or neither
 The purest version of waterfall is neither
 It's not iterative because each phase is separate and not repeated
 It's not incremental because a working product is only available at

the end

 Iteration is the main way you get quality
 It's just so hard to get it right the first time!
 Software development still involves significant trial and error

 Even the waterfall model usually has iterative steps in practice
 Prototype evolution is iterative
 The problem with iteration is rework
 Redoing or throwing out previous work

 Iteration is found lurking everywhere to greater or lesser
degrees, but being incremental is more binary

 To be incremental, final products must be produced along the
way

 Waterfall is not incremental because the products produced
along the way are just used for the next step

 Versions of waterfall were the only commonly used software
development model until the 1990s

 A lot of people were unhappy with it
 In response, some developers created the Agile Manifesto, a

statement about developing software that was diametrically
opposed to waterfall

 The ideas caught on, and many developers embraced the idea,
creating a series of different methods

 Sometimes businesses claimed to be changing over to agile
methods but really just renamed parts of their waterfall approach

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to
value:
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan
That is, while there is value in the items on the right, we value the
items on the left more.

 The ideas caught on, spawning specific methods such as Extreme
Programming, the Crystal Method, Dynamic System
Development Method, and Scrum

 These methods all have the following characteristics:
 Incremental process with increments ranging from a week to a few

months
 Customers are closely and continuously involved in the product
 Lightweight process minimizing documentation and management tasks
 Test driven, using automated test suites to avoid the problems of frequent

code change

 Agile processes are
similar, following a
lifecycle much like the
one on the right

Refine Specifications

Product
Vision

Deliverable
Product

Create Increment

Released

Improve Process

Evaluate Increment

Realization
Not Released

 Product specifications can change without destroying all the
work that's been done

 Customers get a software product quickly
 With new versions coming frequently

 Bad projects can be canceled early
 Time is saved because of lightweight requirements for

documentation and management
 Duplication of effort is usually reduced

 Customers have to be involved constantly, but most
customers don't want to spend their time giving feedback

 Continuous refinement of a product can lead to a bad design
through an evolution of ideas that seemed like a good idea at
the time

 For large projects, it's hard to coordinate many teams on a
product that is evolving unpredictably without documentation

 It's hard to predict the outcomes of agile methods

 Like other workflows, Scrum
can be modeled with an
activity diagram showing
familiar steps

 Everything is built around a
cycle called a sprint

 Because sprints repeat, the
process is iterative

 Because each sprint
produces a shippable
product, the process is
incremental

Create Product
Backlog

Product
Vision

Product
Backlog

Shippable
Product

Sprint
Backlog

Sprint Review

Sprint Execution

Product
Backlog

Sprint
Backlog

Sprint Retrospective

Product
Backlog

Sprint Planning

Project DoneProject Not Done

 Recall that agile methods are built around a product backlog,
containing high-level descriptions of the desired features of the
product
 Items can be added to or removed from the product backlog at any time

 Some of the product backlog is chosen for a sprint
 Making the sprint backlog

 The sprint backlog is implemented, making a new shippable
product

 A sprint review allows customers to give feedback on the product
 The sprint retrospective is used to figure out how to do the next

sprint better

 Product owner (PO)
 Responsible for what's in the product
 Customer representative to the other developers
 Updates the product backlog

 Scrum master (SM)
 Guides the team through the Scrum process
 Facilitator and coach
 Protects the team from outside interference

 Team members
 People who decide how to build the project and build it
 Typically, everyone works on everything

 Product backlog
 A prioritized list of product features that haven't been implemented yet
 Product backlog items (PBIs) are the elements of this list
 Priorities are based on business value

 Sprint backlog
 Subset of PBIs
 Tasks needed to complete them
 Estimates of effort needed for each one

 Potentially shippable increment (PSI)
 Product that could be shipped to the customer (though maybe without all the desired

features)
 A PBI on the sprint backlog that wasn't finished goes back into the product backlog

 Product backlog creation
 The PO creates the product backlog for the first time, using customer input

 Product backlog refinement
 The PO constantly adds and deletes PBIs from the product backlog based on feedback from stakeholders

 Sprint planning
 The PO, SM, and other team members select PBIs, maybe with a particular sprint goal
 PBIs are chosen by priority, taking into account how much can be done by estimating the work for the tasks

for a PBI
 Sprint execution
 Everyone performs the tasks to implement the sprint backlog PBIs

 Sprint review
 A product demo where stakeholders discuss what was added and how they feel about it
 Goal: improving the product

 Sprint retrospective
 The team discusses what went well, what didn't, and how the next sprint can be better
 Goal: improving the process

 The product backlog is a prioritized list of PBIs
 Each PBI consists of
 Specification
 Priority
 Estimate of effort
 Acceptance criteria

 In addition to the specification of functionality, every PBI
should have a priority

 Priorities express how important the PBI is and can be
expressed as a number or a rubric (low, medium, high, critical)

 The PO sets the priorities based on stakeholder feedback
 Dependencies also determine priorities: If X is needed for Y,

then the priority of X must be at least as high as Y
 High-priority PBIs should be small enough to do in a single

sprint

 Each PBI must have an effort estimate
 High-priority, sprintable PBIs need precise estimates (such as

person-days), to aid in sprint planning
 Low-priority, abstract PBIs are further from sprintable status

and only need rough estimates (small, medium, large,
gigantic)

 As PBIs are refined, their effort estimates need to become
more precise

 How do we know when a PBI is done?
 Acceptance criteria are checks a user can do to see if a PBI is

finished and correct
 Often, these form a test suite used by developers
 Following the same pattern of steady refinement, high-

priority PBIs should have detailed acceptance criteria
 These acceptance criteria might be further refined during the sprint

 Refining or grooming the product backlog means:
 Adding, removing, or modifying PBIs
 Making PBIs nearing the top of the product backlog more detailed
 Re-estimating and re-prioritizing PBIs
 Adding acceptance criteria to PBIs

 Refinement happens during sprint review
 It should happen at least once during a sprint to make sure there

are enough sprintable stories for the next sprint
 A PO can use a spreadsheet to manage the product backlog, but

there are also specialized tools

 Two pieces of information are needed: The size of the job and
the speed of the team

 PBIs are estimated by story points or ideal hours
 One or two story points is supposed to be how much effort

the smallest stories take
 Bigger stories are estimated relative to that size

 An ideal hour or a person hour is the amount an average
developer can accomplish in one uninterrupted hour of work

 Story points are more commonly used, since they're easier to
estimate

 Velocity is the amount of work done per sprint
 After a sprint, story points or ideal hours can be added up to

see how much got done
 Past velocities can be used as a guide for how many story

points can get done when planning the next sprint
 Ideally, tracking this information will help get better estimates

of story points and ideal hours for other stories and also a
better estimate of team velocity

 Sprinting is actually doing the implementation
 Sprinting is considered a time-boxing technique, where the

amount of work done is based on the time available
 Rather than letting time expand as needed to finish a task

 For a given project (and at a given company) sprints are usually
the same length, somewhere between a week and a month

 Short, consistent sprints are easier to plan and track and give
rapid feedback

 If PBIs can't be finished during a sprint, they go back on the
product backlog

 If a team finishes all PBIs before the sprint is over, they can get
another one from the PO

 At the end of a sprint, there is a sprint review to reflect on how
the product is changing

 All stakeholders are invited
 Sprint review outline:
 Starts with the overall sprint goal and the PBIs in the sprint backlog
 Team lists the PBIs completed and explains why some didn't get

done
 New aspects of the product are demonstrated
 Everyone discusses how to make the product better

 Results of the review are used for planning the next sprint

 At the end of a sprint, there's also a sprint retrospective
 Only the development team, including the PO and the SM, are

invited
 The retrospective is for analyzing how the team is working and

how to improve
 Improvements tend to be clear when a new team is working on a

new product
 It may still take several sprints for an improvement to get fully integrated

into the process
 Over time, the team can become comfortable with the process,

but finding improvement opportunities is still important

 Quality assurance (QA) is a system for making sure the product
satisfies stakeholder needs

 QA focuses on two distinct goals:
 Validation
 Testing if the product satisfies stakeholder needs
 "Are we building the right product?"
 Example: Does the customer want steak and fries?

 Verification
 Testing if the product satisfies needs properly
 "Are we building the product right?"
 Example: Are the steak and fries cooked well?

 There is no one way to prevent defects
 Instead, preventing defects must be built into the software

development processes that the entire organization uses
 Process improvement is making a process better
 Training and education are necessary

 Process guides such as documentation standards and style
guides help

 Using well-studied design methodologies (such as OOP) can
help

 Reusing design architectures that have been successful in the
past can prevent defects
 Examples: MVC and pipe-and-filter

 Design patterns are standard patterns for OOP classes
 Examples: decorator and factory

 Using well-studied algorithms and data structures helps a
great deal

 Reusing code (often from libraries) is smart, especially since
those libraries have been tested thoroughly

 Formal methods include systems for mathematically
checking that code does what it's supposed to
 Not all code can be modeled mathematically
 Yet some of these systems have found bugs in real software, such as

TimSort, the most commonly used sort in Python and Java
 Prototypes let us explore what defects might happen before

putting them in the final product
 The opposite end of the spectrum from formal methods, since

prototypes are practical rather than theoretical

 Many tools help reduce defects
 Version control tools help track code over time
 Configuration management tools allow changes in one tool to

automatically update other tools
 Examples: Puppet and Ansible

 Integrated development environments (IDEs), once called
computer aided software engineering (CASE) tools, can integrate
many useful tools for defect prevention
 Syntax highlighting
 Two-way translation between code and UML models
 Style checking

 A good process can't keep out all defects
 Some defects will show up and must be found and removed
 Defect detection and removal techniques fall into two

categories:
 Review and correct
 Test and debug

 Review and correct methods look at the code while test and
debug methods look at the product in operation

 There's a formal name for just looking at your code for errors: a
desk check

 A walkthrough is when you explain your code to someone else
 An inspection is a more formal process with trained inspectors
 Inspection roles:
 Moderator schedules and runs the meeting and distributes the code
 Author of the code
 Reader who guides the meeting
 Recorder who takes notes
 Inspectors who check code before and during the meeting

 Testing software helps find cases that are not obvious from
looking at the code

 Software testing has some jargon:
 A failure is a deviation between actual behavior and intended

behavior
 A fault is a defect that can give rise to a failure
 A trigger is a condition that causes a fault to result in a failure
 A test case is a set of inputs and program states
 A collection of test cases is a test suite

 Debugging is using trigger conditions to find and fix faults

System Testing

 Unit tests test a small piece of code (method
or class) in isolation from other code
 Often done by the author

 Integration tests test several small pieces of
code together
 By the author, a testing team, or both

 Alpha and beta tests test the whole product
 Alpha tests usually have a testing team
 Beta tests include users

Unit
Testing

Integration
Testing

Alpha
Testing

Beta
Testing

Defect
Elimination

Defect
Prevention

Process Guides

Analysis and Design Methods

Reference Architectures

Design Patterns

Data Structures and Algorithms

Software Reuse

Prototyping

Version Control

Configuration Management

IDE Tools

Training and Education

Defect
Detection
and Removal

Review and Correct Style and Standards Checkers

Spelling and Grammar Checkers

Reviews
• Desk Checks
• Walkthroughs
• Inspections

Test and Debug Regression Testing

Unit Testing

Integration Testing

System Testing
• Alpha Testing
• Beta Testing

 Interaction design is planning out the user experience (UX) for a
software product

 It cares about how the product looks and sounds (and, one day, smells?)
and how the user gets output and puts input into it

 This field used to get little attention from computer scientists, but it's
really important
 Apple is a great posterchild for showing off the value of UX
 Even Microsoft, maligned for its user interfaces, has invested lots of money

studying how to make windows and icons easier to use
 UX is part of the field of human computer interaction (HCI), which

combines ergonomics, physiology, psychology, and graphic design with
computer science

 The quality of a user interface is called its usability

 Effectiveness: User can access all the features they need
 Efficiency: Users can achieve their goals quickly
 Safety: Users and computers aren't harmed
 Learnability: Users become proficient quickly
 Memorability: Users regain proficiency quickly after time

away from the product
 Enjoyability: Users experience positive emotions when using

the product
 Beauty: Users find the product aesthetically pleasing

 Before coding the UX, models are incredibly helpful to plan
out how it looks and behaves

 Static interaction design models show the audio and visual
parts of the product that don't change during execution

 Dynamic interaction design models show behavior during
execution

 Both are useful

 A use case is an interaction
between a product and its
environment

 An actor is an agent that
interacts with a product

 Use case diagrams (which
we've seen before) are static
interaction design models
that represent the actors that
interact with use cases

 Screen layout diagrams
and page layout
diagrams are drawings of
a product's visual display

 A wireframe is a low-
fidelity version that gives a
rough layout without a lot
of detail

 It's good to start with a
wireframe and refine it
with more detail later

 A use case diagram
shows which actors
interact with use cases

 However, it doesn't
explain what they do

 A use case description is
formatted text that
explains the actions that
an actor makes

 The use case description
is a dynamic interaction
design model

 Example template:

Use Case Name To identify the use case

Actors The agents participating in the use case

Stakeholders and
Needs

What this use case does to meet stakeholder
needs

Preconditions What must be true before this use case begins

Post conditions What will be true when this use case ends

Trigger The event that causes this use case to begin

Basic Flow
The steps in a typical successful instance of this
use case

Extensions
The steps in alternative instances of this use case
due to variations in normal flow or errors

 Design principles favor certain characteristics to make a design better
 SAC principles are three general interaction design principles
 Simplicity
 Simple designs are better
 Lots of options are confusing for the user
 It's better to make commonly used options easy and require a little more work for

unusual options
 Accessibility
 Designs that can be used be more people are better
 Considerations: color blindness, things too small to see or interact with

 Consistency
 Designs that present data in similar ways are better
 Example: use consistent navigation controls

 CAP principles are focused on appearance
 Contrast
 Designs that make different things obviously different are better
 Example: italics and bold
 Example: font size to distinguish headings from text

 Alignment
 Designs that line up on a grid are better
 Indentation is useful

 Proximity
 Designs that group related things together are better

 FeVER principles are about behavior
 Feedback
 Designs that acknowledge user actions are better
 Otherwise, how do you know if what you're doing has an effect?

 Visibility
 Designs that display their state and available operations are better
 Are we in Arm Bomb or Disarm Bomb mode?

 Error Prevention and Recovery
 Designs that prevent user errors and allow error recovery are better
 Prevention example: disable buttons that shouldn't be pressed
 Recovery example: allow undo or ask "Are you sure?" before doing something

dangerous

 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that

 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand,

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your

hand
 Of course, it is often impossible to follow these guidelines

 Each module should shield the internal details of its operation from other
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide

data (and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other thins
 Modules that hide information are easier to understand, test, and reuse because

they stand on their own
 Modules that hide information are more secure and less likely to be affected by

outside errors
 This is why we use mutators and accessors instead of making members

public

 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific
problem or set of classes

 Using interfaces helps

 Module cohesion is how much the stuff in the module is
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information

possible about other classes
 More module cohesion usually leads to looser module

coupling
 Sometimes a module being hard to name suggests that its

data or operations are not cohesive

 The design process is a microcosm of
the larger software development
process

 The steps are analyzing the problem,
proposing solutions (and looking up
existing solutions to similar problems),
and evaluating the solutions (perhaps
combining different solutions) until a
design is selected

Analyze Design
Problem

Design
Problem

Generate and
Improve Candidate

Designs

Evaluate Candidate
Designs

Select Design

Design
Specification

Adequate

Inadequate

Finalize Design

 Architectural design is specifying a
program's major components

 Architectural design is often modeled
with a box-and-line diagram (also
called a block diagram)
 Components are boxes
 Relationships or interactions between

them are lines
 Unlike UML diagrams, box-and-line

diagrams have no standards
 Draw them in a way that communicates

your design

 The Model-View-Controller (MVC)
style fits many kinds of web or GUI
interactions

 The model contains the data that is
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the

model and selects which view to use
 The Java Swing GUI system is built

around MVC
 Good: greater independence between

data and how it's represented
 Bad: additional complexity for simple

models

 Organize the system into layers
 Each layer provides services to layers

above it, with the lowest layer being the
most fundamental operations

 Layered styles work well when adding
functionality on top of existing systems

 Good: entire layers can be replaced as
long as the interfaces are the same

 Bad: it's hard to cleanly separate layers,
and performance sometimes suffers

 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure

 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be

unpredictable

 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for

component reuse
 Bad: each component has to agree on formatting with its inputs and

outputs

 Class diagrams are made up of class symbols (rectangles)
 These class symbols contain one or more compartments
 The top compartment has the class name
 A second, optional compartment often contains attributes

(called member variables in Java classes)
 Often followed by a colon with the type

 A third, optional compartment often contains operations
(called methods in Java classes)
 Sometimes followed by parameter and return types

 Visibility modifiers can be marked:
 + for public
 # for protected
 ~ for package
 - for private

 Only important attributes and operations need to be
specified
 Classes might contain others that aren't shown

 Inheritance is shown with the generalization connector
 A solid line from the child class to a solid triangle connected to the parent class
 Confusingly, this means that children classes point at their parent classes

 Interfaces look like classes but are marked with «interface» above the class name
 This kind of marking is called a stereotype
 Stereotypes show extra information that wasn't part of the original UML class diagram specification

 Classes that implement interfaces have dashed lines leading to a solid triangle connected to
the interface

 Associations are show with lines between classes
 Associations can be labeled to explain them
 The lines can be marked with the multiplicity, showing

how many of each class can be associated with the other
 The multiplicity can be comma separated lists or ranges,

and * means zero or more
 When a class is part of another class, the part is

connected by a line and a diamond (the
aggregation connection) to the whole

From visual-paradigm.com

 Finish review on Wednesday
 Presentations on Friday!

 Finish Project 4 for Friday
 Don't forget Assignment 4 is also due on Friday!
 Review for Final Exam on Wednesday

	COMP 3100
	Last time
	Questions?
	Final exam format
	Review
	Managerial software engineering concerns
	Technical software engineering concerns
	Management
	Aspects of a project that must be managed
	Software development methods
	Requirements and design
	Implementation
	Version Control
	Version control
	Repository
	Actions
	Philosophy of Git
	Git process
	GitHub
	Requirements
	Stakeholders
	Stakeholder needs
	Functional requirements
	Non-functional requirements
	Problems with requirements in traditional processes
	Requirements in agile processes
	How Scrum tries to make changing requirements cheap and easy
	Stating specifications in traditional processes
	Testable requirements
	Requirements traceability
	Stating specifications in agile processes
	User voice form
	Eliciting stakeholder needs in traditional processes
	Eliciting stakeholder needs in agile processes
	Requirements management in traditional processes
	Requirements management in agile processes
	Kinds of requirements modeling
	UML
	Modeling
	System modeling
	UML
	Activity diagrams
	More detailed activity model
	Data-driven modeling
	Use case diagrams
	Sequence diagrams
	State diagrams
	Event-driven modeling
	Class diagrams
	Relationships
	Generalization
	Aggregation
	Software Processes
	Waterfall lifecycle model
	Advantages of waterfall
	More advantages of waterfall
	Disadvantages of waterfall
	More disadvantages of waterfall
	To waterfall or not to waterfall?
	Prototyping
	Prototyping process
	Advantages of prototyping
	Disadvantages of prototyping
	Risk management
	Iterative and Incremental Processes
	Iterative and Incremental Processes
	Iterative processes
	Incremental processes
	Agile
	Agile manifesto
	Agile characteristics
	Agile lifecycle
	Agile advantages
	Agile disadvantages
	Scrum
	Scrum process
	Sprints
	Scrum roles
	Scrum artifacts
	Scrum activities
	Managing the product backlog
	PBI priorities
	PBI effort estimates
	PBI acceptance criteria
	Product backlog refinement
	Estimating work and timeline
	Velocity
	Sprinting
	Sprint review
	Sprint retrospective
	Software Quality Assurance
	Quality assurance
	Defect prevention
	Reusing ideas
	Formal methods and prototypes
	Tools
	Defect detection and removal
	Review and correct methods
	Test and debug
	Overview of testing
	Breaking it all down
	User Interaction Design
	Interaction design
	User interaction design goals
	Interaction design models
	Use case diagrams
	Layout diagrams
	Use case descriptions
	SAC principles
	CAP principles
	FeVER principles
	Software Engineering Design
	Simplicity
	Small modules
	Information hiding
	Minimize module coupling
	Maximize module cohesion
	Design process
	Architectural design
	Model-View-Controller
	Layered style
	Repository style
	Client-server architecture
	Pipe and filter style
	Detailed Design
	More depth on class diagrams
	Inheritance and interfaces in class diagrams
	Other associations
	Complex example
	Upcoming
	Next time…
	Reminders

